Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1367010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469352

RESUMO

Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, ß-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.


Assuntos
Microbiota , Micobioma , Abelhas , Animais , Tailândia
2.
PLoS One ; 19(2): e0297980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329992

RESUMO

The ectoparasitic mite, Varroa destructor is the most serious widespread pest of managed honeybees (Apis mellifera). Several acaricide products, which include essential oils, have been proposed for mite control. In this study, we aimed to apply atmospheric-pressure plasma to modify a cardboard piece surface in order to prolong the delivery of essential oils for controlling Varroa in honeybee colonies. Absorption capacity, release rates and evaporation rates of essential oils were determined. Cardboard piece showed a higher absorption capacity of cinnamon compared to citronella and clove. Surface modification of cardboard pieces using argon plasma at different gas flow rates and treatment durations, significantly affected the absorption of clove oil. Additionally, the release rate of cinnamon, citronella and clove was significantly enhanced after argon plasma treatments. Evaporation of cinnamon was dramatically increased by plasma treatment at 6-h of incubation. The highest evaporation rate was obtained by plasma-treated cardboard piece at a gas flow rate of 0.5 Lpm for 60 s (0.2175 ± 0.0148 µl/g•h). Efficiency of plasma-treated cardboard piece, impregnated with essential oils, was also investigated for Varroa control in honeybee colonies. In the first experiment, formic acid 65% (v/v) showed the highest efficiency of 90.60% and 81.59% with the percent of mite infestation was 0.23 ± 0.13% and 0.47 ± 0.19% at 21 and 35 days, respectively after treatment. The efficacy of cardamon oil (5% (v/v)) delivered using plasma-treated cardboard pieces was 57.71% (0.70 ± 0.16% of mite infestation) at day 21 of experiment. However, the delivery of cardamon oil at the concentration of 1% and 5% (v/v) by untreated cardboard piece had 16.93% and 24.05% of efficacy to control mites. In the 2nd experiment, the application of plasma-treated cardboard pieces impregnated with 5% (v/v) clove oil induced a 38.10% reduction in the population of Varroa mites followed by 5% (v/v) of cardamon with 30% efficiency. Although, the infestation rate of Varroa in colonies was not significant different between treatments, essential oils delivered using plasma-treated cardboard pieces tended to decrease Varroa population in the treated colonies. Hence, atmospheric-pressure plasma for the modification of other materials, should be further investigated to provide alternative control treatment applications against honeybee mites.


Assuntos
Acaricidas , Lamiaceae , Óleos Voláteis , Gases em Plasma , Escabiose , Varroidae , Abelhas , Animais , Acaricidas/farmacologia , Óleos Voláteis/farmacologia , Óleo de Cravo , Gases em Plasma/farmacologia
3.
Sci Rep ; 14(1): 1831, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246935

RESUMO

Ascosphaera apis is a worldwide pathogenic fungi of honeybees that can cause a decline in bee populations. In this study, we investigated the antifungal activity of non-thermal plasma on fungal growth. Spore inactivation after exposure to gas plasma by liquid phase and plasma activated water (PAW) and pathogenicity of A. apis in vivo were also examined. The results demonstrated that the mycelial growth of fungi was completely inhibited after argon plasma treatment. Both gas plasma and PAW exposures resulted in a significant decrease of A. apis spore numbers, maximum reduction of 1.71 and 3.18-fold, respectively. Germinated fungal spores on potato dextrose agar were also reduced after plasma treatment. SEM analysis revealed a disruption in the morphological structure of the fungal spores. The pathogenicity of A. apis on honeybee larvae was decreased after spores treated by gas plasma and PAW with a disease inhibition of 63.61 ± 7.28% and 58.27 ± 5.87%, respectively after 7 days of cultivation. Chalkbrood in honey bees have limited control options and our findings are encouraging. Here, we demonstrate a possible alternative control method using non-thermal plasma for chalkbrood disease in honeybees.


Assuntos
Onygenales , Abelhas , Animais , Larva , Antifúngicos , Argônio , Esporos Fúngicos , Água
4.
J Proteome Res ; 22(6): 2030-2043, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37163710

RESUMO

Nosema ceranae infects midgut epithelial cells of the Apis species and has jumped from its original host A. cerana to A. mellifera worldwide, raising questions about the response of the new host. We compared the responses of these two species to N. ceranae isolates from A. cerana, A. mellifera from Thailand and A. mellifera from France. Proteomics and transcriptomics results were combined to better understand the impact on the immunity of the two species. This is the first combination of omics analyses to evaluate the impact of N. ceranae spores from different origins and provides new insights into the differential immune responses in honeybees inoculated with N. ceranae from original A. cerana. No difference in the antimicrobial peptides (AMPs) was observed in A. mellifera, whereas these peptides were altered in A. cerana compared to controls. Inoculation of A. mellifera or A. cerana with N. ceranae upregulated AMP genes and cellular-mediated immune genes but did not significantly alter apoptosis-related gene expression. A. cerana showed a stronger immune response than A. mellifera after inoculation with different N. ceranae isolates. N. ceranae from A. cerana had a strong negative impact on the health of A. mellifera and A. cerana compared to other Nosema isolates.


Assuntos
Nosema , Abelhas , Animais , Nosema/genética , Proteômica , Apoptose , Imunidade
5.
Animals (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37106881

RESUMO

Tropilaelaps mercedesae, one of the most devastating parasitic mites of honey bee Apis mellifera hosts, is a major threat to honey products by causing severe damage to honey bee colonies. Here, we recorded injury numbers caused by T. mercedesae to different body parts of the larval, pupal, and crippled adult stages of honey bee A. mellifera. We evaluated the relationship between infestation rate and injury numbers per bee for both larvae and pupae. We also noted the total bee numbers per beehive and examined the relationship between the infestation rate and population size. T. mercedesae infested all developmental stages of honey bees, with the highest injury numbers in the abdomens of bee pupae and the antennas of crippled adult bees. Although larvae received more injury numbers than pupae, both infestation rate and injury numbers decreased as the larval stage progressed to the pupal stage. The infestation rate increased as the population size per beehive decreased. This study provided new perspectives to the understanding of changes in the effects of T. mercedesae infestations on different developmental stages of honey bees. It also showed useful baseline information for screening honey bee stock that might have high defensive behaviors against mite infestation.

6.
PLoS One ; 18(3): e0280075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36857385

RESUMO

Stingless bees play a crucial role in the environment and agriculture as they are effective pollinators. Furthermore, they can produce various products that can be exploited economically, such as propolis and honey. Despite their economic value, the knowledge of microbial community of stingless bees, and their roles on the bees' health, especially in Thailand, are in its infancy. This study aimed to investigate the composition and the functions of bacterial community associated with Tetragonula pagdeni stingless bees using culture-independent and culture-dependent approaches with emphasis on lactic acid bacteria. The culture-independent results showed that the dominant bacterial phyla were Firmicutes, Proteobacteria and Actinobacteria. The most abundant families were Lactobacillaceae and Halomonadaceae. Functional prediction indicated that the prevalent functions of bacterial communities were chemoheterotrophy and fermentation. In addition, the bacterial community might be able to biosynthesize amino acid and antimicrobial compounds. Further isolation and characterization resulted in isolates that belonged to the dominant taxa of the community and possessed potentially beneficial metabolic activity. This suggested that they are parts of the nutrient acquisition and host defense bacterial functional groups in Thai commercial stingless bees.


Assuntos
Abelhas , Lactobacillales , Microbiota , Animais , Bactérias , Abelhas/microbiologia , Tailândia
7.
Life (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36836795

RESUMO

Widespread parasites, along with emerging threats, globalization, and climate change, have greatly affected honey bees' health, leading to colony losses worldwide. In this study, we investigated the detection of biotic stressors (i.e., viruses, microsporidian, bacteria, and fungi) in Apis cerana by surveying the colonies across different regions of Thailand (Chiang Mai in the north, Nong Khai and Khon Kaen in the northeast, and Chumphon and Surat Thani in the south, in addition to the Samui and Pha-ngan islands). In this study, we detected ABPV, BQCV, LSV, and Nosema ceranae in A. cerana samples through RT-PCR. ABPV was only detected from the samples of Chiang Mai, whereas we found BQCV only in those from Chumphon. LSV was detected only in the samples from the Samui and Pha-ngan islands, where historically no managed bees are known. Nosema ceranae was found in all of the regions except for Nong Khai and Khon Kaen in northeastern Thailand. Paenibacillus larvae and Ascosphaera apis were not detected in any of the A. cerana samples in this survey. The phylogenetic tree analysis of the pathogens provided insights into the pathogens' movements and their distribution ranges across different landscapes, indicating the flow of pathogens among the honey bees. Here, we describe the presence of emerging pathogens in the Asian honey bee as a valuable step in our understanding of these pathogens in terms of the decline in eastern honey bee populations.

8.
Plants (Basel) ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145824

RESUMO

Evaluation of multiple barriers contributing to reproductive isolation between sympatric plant species is key to understanding the mechanism of their coexistence; however, such investigations in biodiversity hotspots are still rare. In this study, we investigated and compared geography, microhabitat, phenology, flora, and pollinators, in addition to pollen-pistil interactions, seed production, and seed germination of the closely related sympatric Salvia digitaloides and S. flava on Yulong Snow Mountain, Southwestern Yunnan, China. The geographic distribution of these species overlapped, but their adaptation to physical and chemical properties of soil microhabitats differed. They shared the same flowering time but differed in flower size, style length, nectar volume, sugar concentration, and flower longevity. Both species shared bumblebees as effective pollinators, but flower constancy for the two species was relatively strong. Pollen tube growth, seed production, and seed germination were lower in interspecific than in intraspecific crosses. Our study suggested that microhabitat and pollinator isolation acted as the most important isolating barriers in maintaining the coexistence of the two Salvia species. Our study also highlighted that post-pollination barriers play an important role in preventing the gene flow between these two Salvia species.

9.
Insects ; 13(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35735851

RESUMO

Honey bees are economically important insects for crop pollination. They play a significant role as pollinators of wild plants and agricultural crops and produce economical products, such as honey, royal jelly, wax, pollen, propolis, and venom. Despite their ecological and economical importance, the global honey bee population is in decline due to factors including pathogens, parasites, intensive agriculture, and pesticides. Moreover, these factors may be interlinked and exacerbate the loss of honey bees. This study aimed to investigate the interaction between a pesticide, thiamethoxam, and deformed wing virus type A (DWV-A) to honey bees and the effects on survival rate, wing characteristics, and expression of immune and apoptosis genes in Apis mellifera. We described the potential interaction between thiamethoxam and DWV-A on honey bee wing characteristics, DWV-A loads, and the expressions of immune (defensin, abaecin, and hymenoptaecin) and apoptosis genes (buffy, apaf1, caspase3-like, caspase8-like, and caspase9-like). Honey bee larvae were fed with three different thiamethoxam doses (0.001, 1.4, and 14.3 ng/µL of the diet). Then, thiamethoxam-treated white-eyed pupae were injected with 107 copy numbers/honey bee of the DWV-A genome. The interaction between thiamethoxam and DWV-A caused a high mortality rate, crippled wings in newly emerged adult honey bees (100%), and resulted in induced expression of hymenoptaecin gene compared to the control group, while downregulation of caspase8-like, caspase9-like genes compared to the DWV injection group. Therefore, the potential interaction between thiamethoxam and DWV-A might have a deleterious effect on honey bee lifespan. The results from this study could be used as a tool to combat DWV-A infection and mitigate pesticide usage to alleviate the decrease in the honey bee population.

10.
J Invertebr Pathol ; 186: 107688, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34728218

RESUMO

Nosema disease is one factor that can cause colony decline in honeybees (Apis mellifera L.) worldwide. Nosema ceranae has outcompeted Nosema apis in the Western honeybee (A. mellifera) which is its original host. Fumagilin is an effective antibiotic treatment to control Nosema infection but currently it is forbidden in many countries. In this study, 12 plant extracts were evaluated for their toxicity to adult bees and antimicrosporidian activity under laboratory and field conditions. N. ceranae-infected adult bees were fed ad libitum with 50% sucrose solution containing 1% and 5% (w/v) of each plant extract. Bee mortality in N. ceranae-infected groups fed with plant extracts was higher than that in the control group treated with fumagilin. The results demonstrated that 9 of 12 extracts had high antimicrosporidian activity against N. ceranae and their efficacies were comparable to fumagilin. Spore reduction in infected bees was 4-6 fold less after extract treatment. Following laboratory screening, Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos were tested in honeybee colonies. Plant extracts of 2% concentration (w/v) inhibited the development of Nosema spores after 30 days of treatment. At the end of experiment (90 days), spores in the plant extract treated groups were lower than in group treated with fumagilin but there was no significant difference. Although, extracts tested in this study showed high toxicity to bee in laboratory cages, they did not show negative affects on bees under whole colony conditions. Therefore, the effectiveness of plant extracts tested in this study was notable and warrants further study as potential Nosema control agents in honey bees. Plant extracts would offer a non-antibiotic alternative for Nosema control and help reduce the overuse of antibiotics in livestock.


Assuntos
Abelhas/microbiologia , Fungicidas Industriais/farmacologia , Nosema/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Fungicidas Industriais/química , Nosema/fisiologia , Extratos Vegetais/química
11.
Insects ; 12(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204079

RESUMO

Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees' guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees' gut.

12.
J Proteome Res ; 20(1): 804-817, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33305956

RESUMO

Honeybees play an important role in pollinating native plants and agricultural crops and produce valuable hive products. Within the last decade, honeybee colonies have been reported to be in decline, due to both biotic and abiotic stress factors including pathogens and pesticides. This study evaluated the impact of different isolates of Nosema spp. [Nosema apis spores (NA), Nosema ceranae from Apis mellifera from France (NF), N. ceranae from Apis cerana from Thailand (NC1), and N. ceranae from A. mellifera from Thailand (NC2)] on the different gut sections of newly emerged adult A. mellifera bees. With an attempt to decipher the early impact of Nosema spp. on the first barrier against Nosema infection, we used off-gel bottom-up proteomics on the different anatomical sections of the gut four days post inoculation. A total of 2185 identified proteins in the esophagus, 2095 in the crop, 1571 in the midgut, 2552 in the ileum, and 3173 in the rectum were obtained. Using label-free quantification, we observed that the response of the host varies according to the Nosema spp. (N. apis versus N. ceranae) and the geographical origin of Nosema. The proteins in the midgut of A. mellifera, orally inoculated with spores of N. ceranae isolated from France, were the most altered, when compared with controls, exhibiting 50 proteins down-regulated and 16 up-regulated. We thereby established the first mass-spectrometry-based proteomics of different anatomical sections of the gut tissue of Nosema-infected A. mellifera four days post inoculation, following infection by different isolates of Nosema spp. that provoked differential host responses. We reported an alteration of proteins involved in the metabolic pathways and specifically eight proteins of the oxidative phosphorylation pathway. More importantly, we propose that the collagen IV NC1 domain-containing protein may represent an early prognostic marker of the impact of Nosema spores on the A. mellifera health status. Data are available via ProteomeXchange with the identifier PXD021848.


Assuntos
Nosema , Animais , Abelhas , França , Proteômica
13.
PLoS One ; 14(3): e0213171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30845178

RESUMO

Bumblebees (tribe Bombini, genus Bombus Latreille) play a pivotal role as pollinators in mountain regions for both native plants and for agricultural systems. In our survey of northern Thailand, four species of bumblebees (Bombus (Megabombus) montivagus Smith, B. (Alpigenobombus) breviceps Smith, B. (Orientalibombus) haemorrhoidalis Smith and B. (Melanobombus) eximius Smith), were present in 11 localities in 4 provinces (Chiang Mai, Mae Hong Son, Chiang Rai and Nan). We collected and screened 280 foraging worker bumblebees for microsporidia (Nosema spp.) and trypanosomes (Crithidia spp.). Our study is the first to demonstrate the parasite infection in bumblebees in northern Thailand. We found N. ceranae in B. montivagus (5.35%), B. haemorrhoidalis (4.76%), and B. breviceps (14.28%) and N. bombi in B. montivagus (14.28%), B. haemorrhoidalis (11.64%), and B. breviceps (28.257%).


Assuntos
Microsporidiose/patologia , Nosema/isolamento & purificação , Animais , Abelhas , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Microsporidiose/epidemiologia , Microsporidiose/microbiologia , Nosema/classificação , Filogenia , Prevalência , Análise de Sequência de DNA , Tailândia/epidemiologia
14.
J Econ Entomol ; 111(6): 2974-2978, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30184093

RESUMO

This study was carried out to assess the impact of pollen feeding from common floral sources in Thailand (e.g., tea, coffee, and bitter bush) on royal jelly (RJ) properties (i.e., protein pattern, (E)-9-hydroxydec-2-enoic acid (9-HDA), and (E)-10-hydroxy-2-decenoic acid (10-HDA) contents and antibacterial activity). The protein patterns from three different pollen were different, while RJ samples derived from bee colonies fed by different pollen, exhibited similar protein patterns. RJ samples from bee colonies fed by pollen from bitter bush and coffee possessed the higher 10-HDA levels than RJ collected from bee colonies fed by tea pollen. The 9-HDA was found in lower amount than 10-HDA in every sample. Even though the antibacterial activities of pollen were varied, however, RJ samples exhibited similar antibacterial properties. This is the first report showing that different pollen feeding affected 10-HDA contents, but not affected overall protein content and antibacterial properties.


Assuntos
Antibacterianos/análise , Abelhas , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos/química , Proteínas de Plantas/análise , Pólen/química , Animais , Camellia sinensis , Chromolaena , Coffea , Ácidos Graxos/análise , Comportamento Alimentar , Testes de Sensibilidade Microbiana
15.
J Insect Physiol ; 105: 1-8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29289505

RESUMO

Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Abelhas/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Microsporidiose/veterinária , Nosema/fisiologia , Animais , Abelhas/imunologia , Abelhas/metabolismo , Feminino , Microsporidiose/imunologia , Microsporidiose/mortalidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...